Abstract

A series of experiments to study the behavior of thick wires (0.5 mm to 2 mm in diameter) driven by currents of about 1 MA have recently been conducted on the Zebra facility at the University of Nevada, Reno. The objective of these experiments was to study plasma formation on the surface of conductors under the impact of megagauss magnetic fields. Laser shadowgraphy, filtered optical and extreme ultraviolet photodiodes, and extreme ultraviolet spectroscopy used in the experiments provided data on radial expansion of wires and plasma radiation. This paper focuses on numerical simulations of these experiments. Simulations with wires having a diameter of 1.6 mm and less demonstrated plasma formation with temperatures above 3 eV, which is in preliminary agreement with the experiment. For 2 mm diameter wires, although plasma can be observed in the simulations, it has substantially smaller optical thickness than in the simulations of the smaller-diameter wires, and the radiation fluxes prove to be much lower. This can shed light on the experimental results, where the radiation of the 2 mm wires was very weak. The simulated time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The experimental data of the photodiodes also agree well with the simulated time dependence of the detected radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.