Abstract

In experiments on the GIT-12 megaampere generator, the characteristics of conductors made of AISI 321 stainless steel were investigated in the microsecond regime of increasing superstrong magnetic fields. In this regime, a skin explosion of the conductor material takes place with the formation of a dense plasma and its expansion into the interelectrode gap of the vacuum transmission line. The values of the characteristic magnetic field B0 = 100 T are determined, above which there is the effect of nonlinear diffusion of the magnetic field into the conductor, and the critical magnetic field BCT ≅ 260 T, the excess of which leads to the formation of dense plasma on the surface of the massive conductor. A method is proposed for increasing the critical magnetic field on the surface of a conductor up to 1.5 times by choosing the optimal thickness of the conducting surface, and criteria for its determination are given. The effect of increasing the critical magnetic field on the surface of a two-layer sample and creating a pressure in the Mbar range until the moment of formation and expansion of explosion products of an inner conductor with high conductivity has been tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call