Abstract

Two-dimensional (2D) numerical simulations have been performed using OpenFOAM (an open source CFD software package [1]) and waves2Foam (an OpenFOAM based add-on library for wave generations and absorption [2]) to investigate free surface waves past one fixed horizontally semi-submerged cylinder. The 2-D simulations are carried out by solving Navier-Stokes equations which are discretized based on finite volume method (FVM). Volume of Fluid (VOF) method is employed to capture the free surface in the numerical wave tank. Validation studies have been performed by comparing the numerical results of Stokes first-order wave past a semi-submerged circular cylinder with the published experimental data at different incident wave properties. The numerical results are in good agreement with the experimental data. Subsequently, regular and irregular waves past semi-submerged cylinder at different wave heights and the wave lengths are computed numerically to investigate the effect of the wave height and wave length on wave-structure interaction. The numerical results for irregular waves are compared with those induced by regular waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call