Abstract
A theory of photon trapping has been developed in photonic band-gap (PBG) and dispersive polaritonic band-gap (DPBG) materials doped with an ensemble of five-level atoms. These materials have gaps in their photon energy spectra. The atoms are prepared as coherent superpositions of the two lower states and interact with a reservoir and two photon fields. They also interact with each other by dipole-dipole interaction. The Schrodinger equation and the Laplace transform method are used to calculate the expressions for the number densities of the atomic states. Numerical simulations for a PBG material reveal that when the resonance energies lie away from the band edges and within the lower or upper bands, trapping is observed at certain values of the relative Rabi frequency associated with the two fields, which vary depending on the strength of the dipole-dipole interaction between the atoms. Also, if the photon fields are held constant, the population densities of the excited states of the atoms increase with increasing dipole-dipole interaction. These are very interesting phenomena. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.