Abstract

Practically, every processing technology deals with complex multi-phase flows and predicting the fluid flow behavior is crucial for these processes. Current study discusses the application of a mesh-less numerical methodology, i.e. Incompressible Smoothed Particle Hydrodynamics (ISPH) to investigate the behavior of different multi-phase flow systems. This work is presented in a coherent way with increasing test problem difficulties and their concerned physical complexities. A wide range of problems including Laplace’s law, bubble rising, bubble suspension under an external electric field are considered for a code validation purpose, while the numerical results manifest very good accordance with the experimental and theoretical data. Finally, we show the effectiveness of using an external electric field for controlling a complex problem such as Couette flow for a range of electrical permittivity and electrical conductivity ratios. It is noted that the Electrohydrodynamics (EHD) effect on a suspended droplet in Couette flow case is simulated for the first time using the SPH method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.