Abstract
We explore the three-dimensional properties of convective, luminous (L ≈ 104.5–105 L ⊙), hydrogen-rich envelopes of red supergiants (RSGs) based on radiation hydrodynamic simulations in spherical geometry using Athena++. These computations comprise ≈30% of the stellar volume, include gas and radiation pressure, and self-consistently track the gravitational potential for the outer ≈3M ⊙ of the simulated M ≈ 15M ⊙ stars. This work reveals a radius, R corr, around which the nature of the convection changes. For r > R corr, though still optically thick, diffusion of photons dominates the energy transport. Such a regime is well studied in less luminous stars, but in RSGs, the near- (or above-)Eddington luminosity (due to opacity enhancements at ionization transitions) leads to the unusual outcome of denser regions moving outward rather than inward. This region of the star also has a large amount of turbulent pressure, yielding a density structure much more extended than 1D stellar evolution predicts. This “halo” of material will impact predictions for both shock breakout and early lightcurves of Type IIP supernovae. Inside of R corr, we find a nearly flat entropy profile as expected in the efficient regime of mixing-length theory (MLT). Radiation pressure provides ≈1/3 of the support against gravity in this region. Our comparisons to MLT suggest a mixing length of α = 3–4, consistent with the sizes of convective plumes seen in the simulations. The temporal variability of these 3D models is mostly on the timescale of the convective plume lifetimes (≈300 days), with amplitudes consistent with those observed photometrically.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have