Abstract

Because of their simplicity, assumptions of isotropy and homogeneity are often applied to slug test analyses, determining hydraulic conductivity of heterogeneous and anisotropic formations, in spite of their inherent unfitness. In this study, it was examined how anisotropy and heterogeneity of the formation affect well recovery curves and therefore estimates of hydraulic conductivity in slug tests. Using a finite element method (FEM) slug test model, several hypothetical slug tests in anisotropic and heterogeneous formations with known hydraulic parameters and actual formations of unknown parameters were analyzed. Error factors as a result of the assumptions of isotropy and homogeneity were quantified through sensitivity analyses of well recovery curves. Results of slug tests analyzed in this study indicate that: (1) the well recovery curves in slug tests do not show unique shape or signs reflecting the anisotropy and heterogeneity of the tested formation; (2) the assumption of isotropy does not deviate estimates of hydraulic conductivity significantly when the radial hydraulic conductivity is larger than the vertical one in the formation; (3) the assumption of homogeneity in a layered heterogeneous system has a high potential for errors in hydraulic conductivity estimation, however it can be avoided by placing the screened section apart from the adjacent layers; (4) a low permeability well skin skews the hydraulic conductivity of the original formation, depending on the size and hydraulic conductivity of the skin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.