Abstract

CFD (Computational Fluid Dynamics) simulations are widely used nowadays to predict the behaviour of fluids in pure research and in industrial applications. This approach makes it possible to get quantitatively meaningful results, often in good agreement with the experimental ones. The aim of this paper is to show how CFD calculations can help to understand the time evolution of two possible CBRNe (Chemical-Biological-Radiological-Nuclear-explosive) events: (1) hazardous dust mobilization due to the interaction between a jet of air and a metallic powder in case of a LOVA (Loss Of Vacuum Accidents) that is one of the possible accidents that can occur in experimental nuclear fusion plants; (2) toxic gas release in atmosphere. The scenario analysed in the paper has consequences similar to those expected in case of a release of dangerous substances (chemical or radioactive) in enclosed or open environment during nonconventional events (like accidents or man-made or natural disasters).

Highlights

  • Nowadays the perception of risks is completely changed if compared to that in the past

  • CFD (Computational Fluid Dynamics) simulations are widely used nowadays to predict the behaviour of fluids in pure research and in industrial applications

  • The aim of this paper is to show how CFD calculations can help to understand the time evolution of two possible CBRNe (Chemical-Biological-Radiological-Nuclear-explosive) events: (1) hazardous dust mobilization due to the interaction between a jet of air and a metallic powder in case of a LOVA (Loss Of Vacuum Accidents) that is one of the possible accidents that can occur in experimental nuclear fusion plants; (2) toxic gas release in atmosphere

Read more

Summary

Introduction

Nowadays the perception of risks is completely changed if compared to that in the past. In this paper the authors will demonstrate how the numerical simulations, in particular CFD techniques [25–39], can be a powerful tool to predict the consequences of particular accidents giving to the decision makers the chances to better manage the phases of accidents or terroristic events, reducing the risks associated. The authors will start to face the problem of toxic dust resuspension analysing first the problem itself that one of the possible causes of this phenomenon can be the LOVA and will show how these accidents can be approached with the numerical simulations. It is important to merge the different point of view and knowledge in order to use the numerical simulation as predicting tool for nonconventional event (like a dangerous release of a substances both man-made or caused by an accident or a natural event) in order to facilitate the phases of emergency management and restoration of normality. For details about theory and settings, please refer to the COMSOL Multiphysics 5.1 User’s Guide [53]

Hazardous Dust Mobilization
Toxic Gas Release
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call