Abstract

The Numerical Simulations of the June 16, 2010, Heavy Rainfall Event over Singapore are highlighted by an unprecedented precipitation which produced widespread, massive flooding in and around Singapore. The objective of this study is to check the ability of Weather Research Forecasting version 3 (WRFV3) model to predict the heavy rain event over Singapore. Results suggest that simulated precipitation amounts are sensitive to the choice of cumulus parameterization. Various model configurations with initial and boundary conditions from the NCEP Final Global Analysis (FNL), convective and microphysical process parameterizations, and nested-grid interactions have been tested with 48-hour (June 15–17, 2010) integrations of the WRFV3. The spatial distributions of large-scale circulation and dynamical and thermodynamical fields have been simulated reasonably well in the model. The model produced maximum precipitation of ~5 cm over Changi airport which is very near to observation (6.4 cm recorded at Changi airport). The model simulated dynamic and thermodynamic features at 00UTC of June 16, 2010, lead to understand the structure of the mesoscale convective system (MCS) that caused the extreme precipitation over Singapore. It is observed that Singapore heavy rain was the result of an interaction of synoptic-scale weather systems with the mesoscale features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.