Abstract

PurposeNanomedicine-based approaches have shown great potential in the treatment of central nervous system diseases. However, the fate of nanoparticles (NPs) within the brain parenchyma has not received much attention. The complexity of the microstructure of the brain and the invisibility of NPs make it difficult to study NP transport within the grey matter. Moreover, regulation of NP delivery is not fully understood. Methods2D interstitial system (ISS) models reflecting actual extracellular space (ECS) were constructed. A particle tracing model was used to simulate the diffusion of the NPs. The effect of NP size on NP diffusion was studied using numerical simulations. The diffusion of charged NPs was explored by comparing experimental and numerical simulation data, and the effect of cell membrane potential on the diffusion of charged NPs was further studied. ResultsThe model was verified using previously published experimental data. Small NPs could diffuse efficiently into the ISS. The diffusion of charged NPs was hindered in the ISS. Changes in cell membrane potential had little effect on NP diffusion. ConclusionThis study constructed 2D brain ISS models that reflected the actual ECS and simulated the diffusion of NPs within it. The study found that uncharged small NPs could effectively diffuse within the ISS and that the cell membrane potential had a limited effect on the diffusion of charged NPs. The model and findings of this study can aid the design of nanomedicines and nanocarriers for the diagnosis and treatment of brain diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call