Abstract
Understanding protein-protein interactions (PPIs) and the pathways they comprise is essential for comprehending cellular functions and their links to specific phenotypes. Despite the prevalence of molecular data generated by high-throughput sequencing technologies, a significant gap remains in translating this data into functional information regarding the series of interactions that underlie phenotypic differences. In this review, we present an in-depth analysis of heterogeneous network methodologies for modeling protein pathways, highlighting the critical role of integrating multifaceted biological data. It outlines the process of constructing these networks, from data representation to machine learning-driven predictions and evaluations. The work underscores the potential of heterogeneous networks in capturing the complexity of proteomic interactions, thereby offering enhanced accuracy in pathway prediction. This approach not only deepens our understanding of cellular processes but also opens up new possibilities in disease treatment and drug discovery by leveraging the predictive power of comprehensive proteomic data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Structural Biotechnology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.