Abstract

The main applications of civil explosives in soils are soil compaction, mass excavation, and in situ pile creation. The suitability of explosives for each of these applications strongly depends upon the explosive properties and the soil properties. For those reasons, a reliable estimation or process simulation regarding cost efficiency and explosive work ability in the soil with known soil parameters is relevant. This paper presents a numerical simulation study of different types of soil (different amounts of gravel, sand, silt, and clay) under a blast load modeled using Ansys 2020 R1 Autodyn 2D hydrocode, with different types of explosives. The calculated results from the Ansys 2020 R1 Autodyn 2D and the experimental results obtained from the in situ cavity formation caused by blasting are presented. The Jones–Wilkins–Lee (JWL) equation of state parameters was calculated using EXPLO5 V7.01.01 supported by experimental data, while the soil and explosive properties were measured in laboratory and in situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.