Abstract

Significant growth rates of construction require large areas prepared in advance. Given the complexity and large scale of construction on subsidence soils, an important issue remains their compaction. On the article, on the parameters of the explosion momentum of TNT-free explosive compositions based on ammonium nitrate (AN) and after ultrasonic treatment of ammonium nitrate were analytically investigated, and their comparison with ammonite №6 and igdanite was also compared. The principles of explosive pulse control by regulating the content and density of explosives due to ultrasonic radiation and foaming of low-density explosive mixtures have been developed and substantiated. Set the minimum value of the peak pressure at the interface "detonation product - environment" from time for foamed explosives after treatment with ultrasonic radiation. The object of research: Reclamation works and construction. Management of compaction of subsidence and flooded soils by directed action of explosive systems. Investigated problem: Taking into account that the method of compaction of subsiding loess soils with the energy of explosion is used in built-up areas, of particular importance is the control of the explosive pulse through the regulation of the content and density of explosives by ultrasonic radiation and foaming of low-density explosive mixtures this is done to ensure the required degree of compaction of the subsidence of the soil mass and to reduce the harmful seismic impact on the surrounding structures. The main scientific results: The dependence of the duration of the explosive pulse growth on the charge radius for different types of low-density explosives has been established, which indicates that the longest growth time of the explosive pulse is observed for charges based on foamed explosives, both conventional and ultrasonic treated. The dependences of the degree of soil compaction during the explosion of overhead charges of different types of explosives in the polymer housing on the specific costs of explosives are obtained. The research results allow to develop technological methods of controlling the parameters of the explosive pulse by using explosive density, which provides the opportunity to increase the efficiency of explosive energy to maintain the required degree of compaction of subsidence loess soils to a certain depth while seismic protection. The area of practical use of the research results: the use of this type of compaction of unstable soil is possible in the construction industry, in the mining industry and in the military. Innovative technological product: the methods of compaction of unstable soil with the energy of the explosion work when changing the parameters of the pulse, which will minimize the loss of energy in the blasting zone and increase the range of a single charge. Scope of the innovative technological product: the application of this method is possible: for compaction of unstable soil before construction, for soil compaction of runways at field airfields, for demining.

Highlights

  • Investigated problem: Taking into account that the method of compaction of subsiding loess soils with the energy of explosion is used in built-up areas, of particular importance is the control of the explosive pulse through the regulation of the content and density of explosives by ultrasonic radiation and foaming of low-density explosive mixtures this is done to ensure the required degree of compaction of the subsidence of the soil mass and to reduce the harmful seismic impact on the surrounding structures

  • Results and experimental confirmation To confirm the theoretical calculations in the field, studies were conducted to determine the operation of overhead charges of explosives (Fig. 3) of different power using different types of explosives on its ability to provide compaction of loess soils

  • The maximum pressure of these explosives is lower by 20–49 %, and the duration of the explosive pulse is 3–3.5 times longer than a standard low-density explosive

Read more

Summary

Introduction

Providing the necessary parameters of the explosive pulse of explosives for compaction of subsidence soils is an urgent task, because reducing the volumetric concentration of charge energy in contact with the environment by reducing the explosive density reduces the peak detonation pressure while extending the duration of the explosive pulse. This allows to increase the efficiency of the energy of the explosive transformation in the near range of the explosion [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call