Abstract

To understand the tensile deformation of electro-deposited Cu with nano-scale twins, a numerical study was carried out based on a conventional theory of mechanism-based strain gradient plasticity (CMSG). The concept of twin lamella strengthening zone was used in terms of the cohesive interface model to simulate grain-boundary sliding and separation. The model included a number of material parameters, such as grain size, elastic modulus, plastic strain hardening exponent, initial yield stress, as well as twin lamellar distribution, which may contribute to size effects of twin layers in Cu polycrystalline. The results provide information to understand the mechanical behaviors of Cu with nano-scale growth twins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.