Abstract

In the state of navigating covered with liquid fluid, the hydrodynamics loads of the supercavitating vehicle during the deployment process of the tail rudder have an important impact on the stability analysis of the vehicle and the performance design of the tail rudder. In this study, a numerical simulation method for the deployment process of the rudder based on the overlapping grids technology and the concept of relative motion between grid domains is established. Combined with the design requirements of the supercavitating vehicle, the change law of hydrodynamics loads under different deployment rates, attack angles during the deployment process, before and after deployment of the tail rudder are researched in detail. Through the analysis of the velocity vector field, pressure field near the rudder and pressure coefficients of the rudder surface, the reasons for the changes of the hydrodynamic loads in different states are revealed. The results have important reference value for the research on the flow field characteristics of the deployment process of the tail rudder for the supercavitating vehicle, and provide an important design basis for the performance design of the tail rudder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call