Abstract

With the study object of an 100kt/a SL-II ethylene cracking furnace, this paper used Computational Fluid Dynamics (CFD) method to carry out coupled simulation studies on the flow, combustion, radiative heat transfer and thermal cracking reaction processes in the cracking furnace. The standard k– ε two-equation model was applied to turbulence simulation. The finite-rate/eddy-dissipation model was used for modeling of non-premixed combustion of the bottom burners and premixed combustion of the sidewall burners. The Discrete Ordinates (DO) model was applied to the simulation of radiative heat transfer of furnace. The simulation results show the detailed information about velocity, temperature and concentration fields in the furnace and heat flux distribution on the reactor tubes skin. This work will provide a theoretical basis for the optimization of the geometrical structure and operational parameters of the cracking furnace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.