Abstract

Abstract The solar radiation and the conjugate heat transfer through the cabin seat fabric were investigated numerically with a focus on a comparative analysis of various fabric solar reflectance or reflectivity (SR) and inlet cooling air velocity. For this purpose, 3D compressible Reynolds-averaged Navier–Stokes equations with the low Reynolds number turbulence model were utilized to simulate the airflow in the cabin. The discrete ordinate radiation model was adopted to describe the solar radiation. The conjugate heat transfer between the airflow and the fabric seats was included. The airflow temperature, radiative heat flux, and radiative heat transfer through the fabrics in a fixed cross section were studied. The results demonstrate that the increase in fabric SR leads to the increase in energy reflected to the atmosphere, which will bring about a lower temperature on the seat fabric. The decrease in emissivity and the energy absorbed results in the lower heat transfer and heat radiation and leads to the improvement of the cabin thermal environment. The high-temperature gradient near the seat causes the forced air circulation and is beneficial for the improvement of the thermal comfort. However, the cooling effect is not so obvious near the cabin seats when the inflow speed is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.