Abstract
Abstract A 2-D analysis is made for the dynamic interactions between viscous flow and one or more circular cylinders. The cylinder is free to respond to the fluid excitation and its motions are part of the solution. The numerical procedure is based on the finite volume discretization of the Navier–Stokes equations on adaptive tri-tree grids which are unstructured and nonorthogonal. Both a fully implicit scheme and a semi-implicit scheme in the time domain have been used for the momentum equations, while the pressure correction method based on the SIMPLE technique is adopted to satisfy the continuity equation. A new upwind method is developed for the triangular and unstructured mesh, which requires information only from two neighbouring cells but is of order of accuracy higher than linear. A new procedure is also introduced to deal with the nonorthogonal term. The pressure on the body surface required in solving the momentum equation is obtained through the Poisson equation in the local cell. Results including flow field, pressure distribution and force are provided for fixed single and multiple cylinders and for an unrestrained cylinder in steady incoming flow with Reynolds numbers at 200 and 500 and in unsteady flow with Keulegan–Carpenter numbers at 5 and 10.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have