Abstract
This study presents a numerical analysis that models small scale turbulence using numerical viscosity or implicit large-eddy simulation (LES). The motivation for focusing on these models is that the sub-grid scale components of LES are assumed to have a sufficiently high Reynolds number turbulence. The Reynolds number dependence of steady isotropic turbulence is used to validate the present analysis. Here, this dependency ranges from low to high Reynolds numbers. The results of this analysis are validated by comparing them with those of direct numerical simulation. The donor cell method and quick method are used as schemes of the numerical viscosity. Analysis based on the numerical viscosity can give accurate turbulent kinetic energy values at high Reynolds numbers and implicit LES at low Reynolds numbers. However, these models did not accurately predict static pressure fluctuations. These results were discussed by visualizing the large-scale turbulent structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.