Abstract

In the interrupting process of a three-phase vacuum interrupter, there exists a transverse magnetic field (TMF) in the interelectrode region, which is produced by adjacent phases. The deflection of the vacuum arc caused by TMF will affect the interrupting process of vacuum circuit breakers. In this paper, the vacuum arc characteristics considering the action of TMF produced by adjacent phases is simulated based on a steady 2-D asymmetrical magnetohydrodynamic model. The simulation results show that the vacuum arc will swing around and is especially obvious at the smaller current moments near current-zero during one ac half-cycle, because of the changed direction of TMF produced by adjacent phases. This kind of swing phenomena can also be observed in the electrode erosion of unsuccessful interruption. At the moments near current-zero, axial magnetic field is relatively weaker, while TMF generated by adjacent phases is relatively stronger, therefore, the offset phenomenon of plasma parameters is more significant. Compared with smaller diameter electrode arc, larger diameter electrode has larger arc deflection distance, while its value of plasma parameters is much smaller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.