Abstract
Liquid water within the cathode Gas Diffusion Layer (GDL) and Gas Channel (GC) of Proton Exchange Membrane Fuel Cells (PEMFCs) is strongly coupled to gas transport properties, thereby affecting the electrochemical conversion rates. In this study, the GDL and GC regions are utilized as the simulation domain, which differs from previous studies that only focused on any one of them. A volume-of-fluid method is adopted to numerically investigate the two-phase flow (gas and liquid) behavior, e.g., water transport pattern evolution, water coverage ratio as well as local and total water saturation. To obtain GDL geometries, an in-house geometry-based method is developed for GDL reconstruction. Furthermore, to study the effect of GDL carbon fiber diameter, the same procedure is used to reconstruct three GDL structures by varying the carbon fiber diameter but keeping the porosity and geometric dimensions constant. The wall wettability is introduced with static contact angles at carbon fiber surfaces and channel walls. The results show that the GDL fiber microstructure has a significant impact on the two-phase flow patterns in the cathode field. Different stages of two-phase flow pattern evolution in both cathode domains are observed. Due to the difference in wettability, the water coverage of the GDL/GC interface is smaller than that of the channel side and top walls. It is also found that the water saturation inside the GDLs stabilizes after the water breakthrough, while local water saturation at the interface keeps irregular oscillations. Last but not the least, a water saturation balance requirement between the GDL and GC is observed. In terms of varying fiber diameter, a larger fiber diameter would result in less water saturation in the GDL but more water in the GC, in addition to faster water movement throughout the total domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.