Abstract

Various methods can be used to numerically simulate the aerodynamic separation of fine-grained bulk material, including discrete element methods, finite element methods, and bounded domain methods. In all these methods, these equations are solved numerically, and the results are used to determine the trajectories and velocities of air and particles. The Discrete Element Method (DEM), on the basis of which the study will be conducted, is designed for modeling the granular flow of materials. The purpose of the research is to simulate the movement of fine-grained loose material under the influence of air flow and calculate the parameters of its aerodynamic separation in the Simcenter STAR-CCM+ software package. The following were selected as physical models: gas, two-dimensional, separated flow, gradients, ideal gas, isothermal fluid energy equation, unsteady implicit, turbulent, Reynolds averaging of the Navier-Stokes equation, K-Epsilon turbulence model, admissible two-layer K-Epsilon, wall distance, double layer for any y+, gravity, Lagrangian multiphase, DEM discrete element model, multiphase interaction. As a result of the numerical simulation of the movement of fine-grained loose material under the influence of the air flow in the Simcenter STAR-CCM+ software package, the distribution of their components in the area of the separator was constructed. The following parameters were adopted as research factors: the diameter of the particles of the liquid fraction and impurities d, the particle supply speed f, the air flow speed v. Based on the results of the processing of the obtained data set in the Wolfram Cloud software package, the patterns of changes in the position of the intersection line of the distribution of two fractions (distance x) and the content of impurities δ in the liquid zone of separation from research factors were established. The presented detailed method of numerical modeling can be used to study other methods of separation of fine-grained loose materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call