Abstract
A general numerical approach was developed to simulate the mechanical properties and the failure of heterogeneous elasto-plastic materials using statistical distributions of the material properties. An appropriate elastic-plastic constitutive relation is used to describe the material behavior and failure in each element, with a two-parameter Weibull distribution used to produce the initial heterogeneous material property variations. An adaptive incremental load-step is applied so that only one or a few elements (or integration points) change their status (i.e., from elastic to plastic, or from plastic to strain failure) within one load step. A failed element is then assigned a very small modulus to simulate the failure rather than removing it from the model, which keeps the continuity of the geometric mesh. The numerical results show that the model is suitable for simulating the effective mechanical properties and failure of heterogeneous materials with local elasto-plastic constitutive relations.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have