Abstract

In this work, we are interested in the numerical simulation of a high-speed hot jet impinging on a free liquid surface at rest by means of diffuse interface models. We first consider the case of a low-temperature subsonic jet; a 4-equation model is used on a 2D axi-symmetric setup. Turbulence is accounted for by solving the Reynolds averaged equations and using a k-ω turbulence model. Numerical results are evaluated by comparing the depth of the cavity formed in the liquid surface to the predicted values using theoretical models from the literature. We then consider the case of a high-temperature jet. We start by showing equilibrium assumption between the liquid and gas phases which is no longer valid. A 5-equation model that does not rely on this assumption is presented. Both models are compared numerically on a simplified set-up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.