Abstract
Near-wall heat sources have a crucial part to play in the process of particle deposition. Thus, this study investigates the impact of the near-wall heat source on the distribution patterns of particle deposition on the vertical wall behind the heat source, taking into account the variability in heat source temperatures and distances from the vertical wall. A model based on the Eulerian–Lagrangian method was established for tracking the motion trajectories of 1000 particles with a density of 1400 kg/m3 and a particle size range of 0.01–10.0 μm. The temperature field, airflow field, and particle deposition distribution in six cases were analyzed. It was shown that the heat source temperature significantly affectis the temperature field, airflow field, and particle deposition distribution on the vertical wall behind the heat source. This study demonstrated that as the temperature rises, the quantity of particles deposited in the upper-right region of the vertical wall decreases more noticeably. The quantity of particles deposited onto the vertical wall is inversely related to the distance between the near-wall heat source and the vertical wall. On one hand, the deposition distribution law serves as a foundation for advancing the technology aimed at removing suspended particles via thermal plumes. On the other hand, it provides critical insights for addressing the challenges associated with harmful particle deposition linked to the attachment effects of thermal plumes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have