Abstract

The delay arming process of initiating explosive (IE) brakes for fuse is complex and hard to be verified. A numerical simulation model of IE brakes was established based on the arbitrary Lagrange-Euler method. The model included the structure, the air filed, etc. The simulation boundary conditions were defined, including the contacts, blasting parameters of the explosive and the fluid-solid coupling interface. The simulation results show that the shear pin of the chosen IE can be cut off. When the piston needs to move 0.8 cm, the time set to the delay arming of the IE brakes model is about 40 μs. The maximum displacement of the piston is 1.17 cm. The model provides basis for parameters design and further improvement of IE brakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.