Abstract

The supercritical carbon dioxide (SC-CO2) jet can break rocks at higher penetration rates and lower threshold pressures than the water jet. The abrasive SC-CO2 jet, formed by adding solid particles into the SC-CO2 jet, is expected to achieve higher operation efficiency in eroding hard rocks and cutting metals. With the computational fluid dynamics numerical simulation method, the characteristics of the flow field of the abrasive SC-CO2 jet are analyzed, as well as the main influencing factors. Results show that the two-phase axial velocities of the abrasive SC-CO2 jet is much higher than those of the abrasive water jet, when the pressure difference across the jet nozzle is held constant at 20 MPa, the optimal standoff distance for the largest particle impact velocity is approximately 5 times of the jet nozzle diameter; the fluid temperature and the volume concentration of the abrasive particles have modest influences on the two-phase velocities, the ambient pressure has a negligible influence when the pressure difference is held constant. Therefore the abrasive SC-CO2 jet is expected to assure more effective erosion and cutting performance. This work can provide guidance for subsequent lab experiments and promote practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call