Abstract

The initiation and propagation behavior of fractures induced by supercritical carbon dioxide (SC-CO2) jet fracturing is significant to evaluate stimulated reservoir volume (SRV). However, the propagation characteristics of fractures induced by SC-CO2 jet in layered rocks with layers having different mechanical properties have not yet been studied. In this study, four groups of artificial sandstones were used to conduct SC-CO2 jet fracturing experiments and investigate the fracture initiation and propagation behavior in hard and soft layered rocks. A strain collection device was employed to monitor the strain changes of the specimens during the experiments, and after the experiments, a three-dimensional scanner was used to obtain the morphologies of the main fractures. Experimental results showed that the SC-CO2 jet fracturing can be divided into the pressurization of the perforation pressure stage and fracture propagation stage, and the fractures initiation and propagation is intermittent. Three types of main fractures have been found—longitudinal fracture, transverse fracture and oblique fracture—and the formation mechanism of the main fractures has been elaborated. The rock strength can affect the number and complexity of fractures created and the fracturing rate, and the Young’s modulus of rock has an effect on fracture propagation length. The fractures mainly develop near the perforation and are difficult to propagate to another layer with different mechanical properties. The result in our study is conducive to the application of SC-CO2 jet fracturing technology in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.