Abstract

We simulate here the emplacement of the debris avalanche generated by the last flank collapse event of Montagne Pelee volcano (30–45 ka), Martinique, Lesser Antilles. Our objective is to assess the maximum distance (i.e., runout) that can be reached by this type of debris avalanche as a function of the volume involved. Numerical simulations are performed using two complementary depth-averaged thin-layer continuum models because no complete models were available in the literature. The first model, SHALTOP, accurately describes dry granular flows over a 3D topography and may be easily extended to describe submarine avalanches. The second model, HYSEA, describes the subaerial and submarine parts of the avalanche as well as its interaction with the water column. However, HYSEA less accurately describes the thin-layer approximation on the 3D topography. Simulations were undertaken testing different empirical friction laws and debris avalanche volume flows. Our study suggests that large collapses (~25 km3) probably occurred in several times with successive volumes smaller than about 5 km3 entering the sea. This result provides new constraints on the emplacement processes of debris avalanches associated with these collapses which can drastically change the related hazard assessment such as the generated tsunami, in a region known for its seismic and volcanic risks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call