Abstract

An integrated fluid–structure numerical model has been developed to simulate the response of a single degree of freedom (SDOF) structure outfitted with a Tuned Liquid Damper (TLD). The structure is exposed to random external excitations. A non-linear, two-dimensional, flow model has been developed using the finite-difference method. Unlike most existing flow models, the present model does not include any linearization assumptions; it rather solves the entire nonlinear, moving boundary, flow problem under conditions leading to large interfacial deformations. The free surface has been reconstructed using the volume of fluid method and the donor–acceptor algorithm. The Duhamel integral method has been used to determine the response of the structure. The effectiveness and accuracy of the flow model has been validated using a set of benchmark problems and experimental data. The numerical results of this model have been compared with results of an equivalent TMD model. The present fluid–structure model can be used as a valuable tool for performance evaluation and design of more effective tuned liquid dampers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.