Abstract

Results are presented from a continuing investigation of spin-glass transition effects by numerical simulation. The model is one of classical unit vectors randomly distributed on an fcc lattice, with RKKY exchange coupling and nearest-neighbor dipolar coupling in an approximate representation of dilute Mn in Cu. Results for system energy and for dipolar energy as a function of temperature show no resolvable features at the freezing temperature TG* in accord with the high-precision specific heat data of Fogle, Boyer, Phillips, and Van Curen. Additional details of shattered susceptibility behavior in the vicinity of the ground-state transition are presented. Further data on freezing temperatures as a function of dipolar coupling strength D show a trend toward macroscopic behavior (i.e., TG* independent of D) with a sample of 4928 spins. Finally, a moderately sharp onset of freezing transverse to an applied magnetic field is found, as predicted by the mean-field calculations of Toulouse and Gabay. As expected, this transition is unrelated to transverse susceptibilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.