Abstract

Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl- l-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H– 1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD 0 ( S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 ( δ = 8 ppm) and H4 ( δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD 0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D 0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 − 3) × 10 −4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 − 137) × 10 −4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model solutions of histidine and N-acetyl- l-aspartate (NAA) enabled the assignment of an additional signal component at δ = 8 ppm of Cs in vivo to the amide group at the peptide bond. The visibility of this proton could result from hydrogen bonding which would agree with the anticipated stronger motional restriction of Cs. Referring to the observation that all dipolar-coupled multiplets resolved in localized in vivo 1H NMR spectra of human m. gastrocnemius collapse simultaneously when the fibre structure is tilted towards the magic angle ( θ ≈ 55°), a common model for molecular confinement in muscle tissue is proposed on the basis of an interaction of the studied metabolites with myocellular membrane phospholipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.