Abstract
Distortion is a severe problem in weld products. It depends on various process parameters like plate thickness, current, voltage, type of weld joint and restraints put on. If distortion is not properly dealt during welding then the product may become useless from geometric accuracy point of view. In the present study, a 3-D coupled transient thermal analysis model with auxiliary side heating (parallel heating) is developed to control angular distortion. During analysis, parallel heating flames are placed at several locations from weld line in cross direction. A user defined subroutine is used to apply transient heat source and side heating flames. Element birth and death technique is used to simulate the filler material deposition. One side multipass ‘V’ butt weld configuration is used for this study. A series of observational tests are done with a special experimental fixture using Manual Metal Arc Welding (MMAW) to validate the proposed FEA model. It is found that the angular distortion has decreased from 2 mm to 0.4 mm with change in side heating distance from 50 to 90 mm from the weld line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.