Abstract
The aim of this paper is to simulate the rebar/concrete interface debonding of FRP strengthened RC beams under fatigue load and also, to ascertain the influence of design parameters such as the elastic modulus, thickness and length of the FRP plate on the debonding performance. In order to simplify the simulation, some basic equilibrium equations are formulated and then the stresses of the rebar and FRP plate are numerically solved, and stress intensity factor is avoided in the simulation by fundamentals of fracture mechanics because of its complexity around the crack tip of bi-material interface. With the combination of finite element method and difference approximation, authors program the degradation model of coefficient of friction, debond criterion, propagation law and loop of load process into a commercial finite element code to investigate the fatigue debonding. The relationships between the debond length as well as other fatigue parameters and number of cyclic load are obtained and discussed.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have