Abstract

Two-dimensional systems such as quantum spin liquids or fractional quantum Hall systems exhibit anyonic excitations that possess more general statistics than bosons or fermions. This exotic statistics makes it challenging to solve even a many-body system of non-interacting anyons. We introduce an algorithm that allows to simulate anyonic tight-binding Hamiltonians on two-dimensional lattices. The algorithm is directly derived from the low energy topological quantum field theory and is suited for general Abelian and non-Abelian anyon models. As concrete examples, we apply the algorithm to study the energy level spacing statistics, which reveals level repulsion for free semions, Fibonacci anyons, and Ising anyons. Additionally, we simulate nonequilibrium quench dynamics, where we observe that the density distribution becomes homogeneous for large times---indicating thermalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.