Abstract

The aim of this paper is to investigate the numerical implementation of the field dislocation mechanics (FDM) theory for the simulation of dislocation-mediated plasticity. First, the mesoscale FDM theory of Acharya and Roy (2006 J. Mech. Phys. Solids 54 1687–710) is recalled which permits to express the set of equations under the form of a static problem, corresponding to the determination of the local stress field for a given dislocation density distribution, complemented by an evolution problem, corresponding to the transport of the dislocation density. The static problem is solved using FFT-based techniques (Brenner et al 2014 Phil. Mag. 94 1764–87). The main contribution of the present study is an efficient numerical scheme based on high resolution Godunov-type solvers to solve the evolution problem. Model problems of dislocation-mediated plasticity are finally considered in a simplified layer case. First, uncoupled problems with uniform velocity are considered, which permits to reproduce annihilation of dislocations and expansion of dislocation loops. Then, the FDM theory is applied to several problems of dislocation microstructures subjected to a mechanical loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.