Abstract
Cross-correlation-based electron backscattering diffraction analysis has been used to map lattice rotations in Ti–6Al–4V polycrystals deformed by load-controlled fatigue and dwell fatigue including a hold at maximum load. The lattice curvatures were used to form lower bound estimates of the geometrically necessary dislocation (GND) density distributions. In all cases the density of 〈a〉-type GNDs was much higher than for 〈c+a〉-type GNDs. As for tensile deformation the GND density histograms were significantly skewed toward the high density side. Observations of interrupted fatigue tests suggested that the density of 〈a〉-type GNDs decreases during continued cyclic loading, presumably due to the formation of tightly bound dipoles and multipole structures. As has been proposed in models of facet fatigue formation, an example is presented of the accumulation, within a soft grain, of GNDs in a diffuse pile-up against a grain boundary with a hard grain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.