Abstract
The paper presents a numerical investigation of the structural optimization of a JAG-type corrugated plate and enhanced heat transfer under pulsating flow based on the research results that have been achieved. Firstly, the corrugation pitch, corrugation depth, and corrugation inclination of the corrugated plate were optimized using Taguchi method to obtain the best heat transfer performance. Secondly, a detailed study is carried out on the flow and heat transfer characteristics under different pulsation velocities (0.01 m/s∼0.1 m/s), frequencies (0.4Hz–3.2Hz), and amplitudes (0.1–0.9). Additionally, the relationship between the flow variation at the contact tail of the corrugated channel and enhanced heat transfer is elucidated in combination with the field synergy theory. The results demonstrate that the application of pulsation characteristics to fluid flow enhances heat transfer efficiency under different working conditions, with significantly superior heat transfer performance observed at low flow rates compared to high flow rates. Moreover, the modification of amplitude has a greater impact on heat transfer performance compared to changes in frequency and speed conditions. Changing the amplitude can produce a better synergistic effect. The research results can provide important reference for the engineering application of enhanced heat transfer by pulsating flow.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have