Abstract

Hydraulic fracturing is an economically effective technology developing the glutenite reservoirs, which have far stronger heterogeneity than the conventional sandstone reservoir. According to the field production experience of Shengli Oilfield, horizontal-well fracturing is more likely to develop a complex fractured network, which improves the stimulated volume of reservoir effectively. But the clear mechanism of horizontal-well hydraulic fracture propagation in the glutenite reservoirs is still not obtained, thus it is difficult to effectively carry out the design of fracturing plan. Based on the characteristics of the glutenite reservoirs, a coupled Flow-Stress-Damage (FSD) model of hydraulic fracture propagation is established. The numerical simulation of fracturing expansion in the horizontal well of the glutenite reservoir is conducted. It is shown that a square mesh-like fracture network is developed near the horizontal well in the reservoir with lower stress difference, in which fracture is more prone to propagate along the direction of the minimum principal stress as well. High fracturing fluids injection displacement and high fracturing fluid viscosity lead to the rise of static pressure of the fracture, which results in the rise of fracture complexity, and greater probability to deflect when encountering gravels. As the perforation density increases, the micro-fractures generated at each perforation gather together faster, and the range of the stimulated reservoir is also relatively large. For reservoirs with high gravel content, the complexity of fracture network and the effect of fracture communication are obviously increased, and the range of fracture deflection is relatively large. In the case of the same gravel distribution, the higher the tensile strength of the gravel, the greater fracture tortuosity and diversion was observed. In this paper, a simulation method of horizontal well fracture network propagation in the reservoirs is introduced, and the result provides the theoretical support for fracture network morphology prediction and plan design of hydraulic fracturing in the glutenite reservoir.

Highlights

  • The glutenite reservoirs are generally characterized by lowporosity, low- permeability and deep burial

  • High fracturing fluid viscosity will accelerate the gathering of fractures, which is not conducive to develop a high stimulated area

  • The influencing factors of fracturing development of horizontal well in the glutenite reservoir are studied by numerical simulation

Read more

Summary

Introduction

The glutenite reservoirs are generally characterized by lowporosity, low- permeability and deep burial. Li et al adopted the finite element method (FEM) to simulate the dynamic process of rock failure in the glutenite reservoirs, conducted research on influence of horizontal geostress difference, gravel size and content on the fracture morphology, and identified five fracturing modes (termination, branching, deflection, penetration, and attraction) of fracture encountering the gravel based on numerical simulation, obtaining some valuable conclusions (Li et al, 2013). The rule of fracture propagation in the glutenite reservoirs was simulated in terms of experiment and numerical simulation, but the scale and duration of simulation were limited, and there was little research on influence of gravel and matrix rock mechanical parameters, fracturing fluids displacement and viscosity, gravel size, etc. The influence of reservoir principal stress difference, hydraulic fracturing treatment parameters, gravel content, tensile strength, etc. on the hydraulic fracture propagation, is studied, aiming at capturing the profound understanding of horizontal well hydraulic fracture network propagation in the glutenite reservoirs

Mathematical model of fracture propagation
Model validation
Results and analysis
Influence of horizontal geostress difference
Influence of fracturing fluids injection displacement
Influence of fracturing fluids viscosity
Influence of perforation density
Influence of gravel content
Influence of gravel tensile strength
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call