Abstract

Properties of existing cavitation models are discussed and a compressible mixture flow method based a simplified estimation of bubble cavitation is then presented for numerical simulation of high-speed water jets accompanied by intensive cavitation. Two-phase fluid media of cavitating flow are treated as a mixture of liquid and bubbles, and the mean flow is computed by solving RANS equations for compressible fluids considering the effect of bubble expansion a/o contraction. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from a submerged nozzle are presented and its applicability to intensively cavitating jets is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call