Abstract

AbstractMitigation of blast effects caused by accidental explosions is one of the major challenges in structural engineering. Fiber-reinforced polymer (FRP) sandwich panels offer promising systems for blast mitigation applications due to their considerable energy absorption compared to other materials with similar density. The FRP sandwich panels can have different inner core configurations that can be filled with other materials whenever needed. This paper numerically evaluates the effectiveness of new FRP honeycomb sandwich panels in resisting blast loads. A numerical model has been created using nonlinear explicit finite element simulation. Then, the model has been validated using the experimental field tests in the literature. Twelve FRP panels with different inner core configurations have been proposed to enhance the panels’ performance by reducing their peak deformation and increasing their energy dissipation. The paper also investigates the effect of filling the FRP sandwich panels with sand on the...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call