Abstract

Friction stir spot welding process is a solid state joining process which has attracted great attention due to its ability to join low melting point light weight alloys such as aluminium and magnesium with high efficiency. In order to understand the complex thermo-mechanical joining process involved with friction stir spot welding, a numerical simulation study was done using ABAQUS finite element software. The simulation primarily aims to interpret the effect of a set of process parameters and tool geometry on the workpiece plates. Johnson-Cook damage criteria model was used to obtain the stress and strain distribution on the workpiece consisting of aluminium 6061 and magnesium AZ-31B placed in a lap configuration. Temperature distribution of the workpiece was obtained by simulating a penalty based frictional contact between the tool and the plate. The thermal results showed that the maximum temperatures attained were significantly lower than the melting points of the base materials indicating that the material mixing and joining occurred as a result of superplastic deformation process instead of melting. Change in material flow behaviour was also observed by the model as pin and shoulder geometries changed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call