Abstract

At present, the numerical simulation on the aerodynamic response and force of the iced conductor are mainly based on the quasi steady criterion, which ignored the interaction between the conductor and the flow field. This paper presents a numerical study of three kinds of fluid-structure interaction models for D-shape conductor. The effects of reduced velocity, degree of freedom and wind attack angle on aerodynamic response of the iced conductor are discussed. The results show that the rotational freedom has certain influence on the across-wind vibration. The mean value of drag coefficient decreases with the increase of wind attack angle, while the lift and moment coefficient increase with the increase of wind attack angle. When the maximum amplitude of vibration displacement occurs, the corresponding reduced velocity is not entirely consistent with that of the maximum aerodynamic force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call