Abstract

When conducting numerical analyses, boundary conditions are generally applied homogeneously, neglecting the inherent heterogeneity of the material being represented. Whilst the heterogeneity is often considered within the medium, its influence on the response at the boundary should also be accounted for. In this study, A novel approach to applying heterogeneous boundary conditions in the simulation of physical systems is presented, particularly focusing on moisture transport in unsaturated soils. The proposed method divides the surface into blocks or “macro-elements” and scales the boundary conditions based on the variation of material properties within these blocks. The principle of using overlapping kernel functions allows local effects to be considered, impacting neighbouring regions. To demonstrate the efficacy of the approach, a set of analyses were conducted that considered infiltration into a body of unsaturated soil, with various configurations of material properties and boundary conditions. The numerical simulations indicate that the application of scaled boundary conditions leads to a more natural and realistic response in the system. The applied method is independent on the numerical techniques employed in the simulation process, making it adaptable to existing computational codes, offering flexibility in capturing complex behaviours, and providing insights into how heterogeneity influences the system’s overall response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.