Abstract

We study the flow of an evaporating liquid film in triangular open microchannel. Above the surface of the liquid flows a gas. The sear-stress on the gas-liquid surface drags the liquid and removes the vapor. It models either flow in a channel or a flow in a single groove. The novelty of this work is that we simulate gas-driven flow with evaporation. We use Boundary element method to solve Laplace equation with mixed boundary conditions. This method gives the normal derivative of vapor concentration at the surface of the liquid. The resulting evaporation flux is growing sharply near the contact line. Integral evaporation coefficient slightly depends on the depth of the liquid. The upper gas flow drives the liquid film, resisting a velocity drop and preventing the dry spot formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call