Abstract

When transplanting the gas–solid fluidized bed technology to the offshore floating platform, the gas–solid flow characteristics in the bed will be affected by the rolling of the platform. In this paper, the flow field, especially the dynamic variation characteristics of the particles, in a two-dimensional rolling fluidized bed, is investigated using the numerical simulation method. The results show that when the bed is in an inclined position, the gas/particle phases gather in the upper/lower wall region of the inclined bed. During the rolling process of the bed, this behavior results in a periodic change in the gas–solid flow state near the wall region, forming an overall particle internal circulation flow mode of ‘upward flow rate in the upper wall region and downward flow rate in the lower wall region’. The solid holdup in the lower wall region fluctuates at a low amplitude around high values, with a corresponding downward solid flow rate. Meanwhile, the upper wall region has a high frequency and amplitude of solid holdup fluctuations and a corresponding upward solid flow rate. In addition, affected by the Coriolis force, a ‘lag phenomenon’ appears when the inclination angle decreases, compared with the instantaneous inclination angle increase stage. It is anticipated that this paper will provide theoretical guidance for the engineering application of the fluidized bed on the offshore floating platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call