Abstract

AbstractSummary: The cohesive zone model is used for the numerical simulation of crack growth in homogeneous specimens made of two different grades of polyethylene (PE) as well as in PE‐bimaterials. The material data and the shapes of the cohesive function are deduced from experimental data by Ivankovic et al., Eng. Fract. Mech. 71, 2004, 657–668 and Ting et al., Polym. Eng. Sci. 46, 2006, 763–777. Fracture toughness parameters are evaluated from the simulated load versus displacement curves. The results show a significant influence of the arrangement of the two PE‐grades in the bimaterial specimens, caused by both the different material properties and the different characteristic parameters of the cohesive function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.