Abstract
More than sixty percent of the world’s remaining oil reserves are hosted by intensely fractured porous rocks, such as the carbonate sequences of Iran, Iraq, Oman, or offshore Mexico (Bedoun, 2002). The high contrast of capillarity between the matrix and the fractures makes a significant difference in the recovery performance of fractured and non-fractured reservoirs (Lemonnier and Bourbiaux, 2010). Simulation of naturally fractured reservoirs is a challenging task from both a reservoir description and a numerical standpoint (Selley, 1998). This paper presents the recovery performance of CO2 injection into a local fractured and faulted gas condensate reservoir in Western Australia. Tempest 6.6 compositional simulation model was used to evaluate the performance of uncertain reservoir parameters, injection design variables, and economic recovery factors associated with CO2 injection. The model incorporates experimental IFT, relative permeability data and solubility data at various thermodynamic conditions for the same field. These measurements preceded the simulation work and are now published in various places. The model uses Todd-Longstaff mixing algorithm to control the displacement front expansion. This paper will present, with aid of simulation output graph and tornado charts, the results of natural depletion, miscible and immiscible CO2 injection, waterflooding, WAG, sensitivity of fracture porosity, permeability and fracture intensity. The results also demonstrate the effect of initial reservoir composition, well completion and injection flow rate. All simulation cases were carried out at various injection pressures. The results are discussed in terms of transport mechanisms and fluid dynamics. This project was sponsored by a consortium of companies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.