Abstract

Carbon dioxide disposal into deep aquifers is a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO 2 disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO 2 injection, the authors have analyzed the impact of CO 2 immobilization through carbonate mineral precipitation. Batch reaction modeling of the geochemical evolution of 3 different aquifer mineral compositions in the presence of CO 2 at high pressure were performed. The modeling considered the following important factors affecting CO 2 sequestration: (1) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, (2) CO 2 solubility dependence on pressure, temperature and salinity of the system, and (3) redox processes that could be important in deep subsurface environments. The geochemical evolution under CO 2 injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO 2 sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount of CO 2 that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO 2 dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of Fe(III) mineral precursors such as goethite or glauconite. The accumulation of carbonates in the rock matrix leads to a considerable decrease in porosity. This in turn adversely affects permeability and fluid flow in the aquifer. The numerical experiments described here provide useful insight into sequestration mechanisms, and their controlling geochemical conditions and parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.