Abstract

The hemodynamics and fluid mechanical forces in blood vessels have long been implicated in the deposition and growth of atherosclerotic plaque. Detailed information about the hemodynamics in vessels affected by significant plaque deposits can provide insight into the mechanisms and likelihood of plaque weakening and rupture. In the current study, the governing equations are solved in their finite volume formulation in several patient-specific geometries. Recirculation zones, vortex shedding, and secondary flows are captured. The forces on vessel walls are shown to correlate with unstable plaque deposits. The results of these simulations suggest morphological features that may usefully supplement percent stenosis as a predictor of plaque vulnerability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.